Homework 10

A. Chorin

March 30, 2005

Due April 13.

- 1. Consider again the n-fold integral which we found as an approximation to a Wiener integral; discuss how to evaluate it by Markov chain Monte-Carlo.
- 2. Consider the one dimensional Ising model; group the variables in groups of two, and pick as resolved variables the spins at the odd locations. Let H_j be the Hamiltonians $H_j = \sum_i s_i s_{i+j}$. Calculate an approximation to \hat{H} as follows: Assume that \hat{H} can be written as $\hat{H} = a_1 H + a_2 H_2$, where $H_j = \sum_i s_i s_{i+j}$. Find the coefficients a_1, a_2 as follows: project $(d/ds_1)H$ on the subspace spanned by $(d/ds_1)H_2, (d/ds_1)H_4$ (note the 4!!!), then renumber the spins so that all the sites are occupied. Explain why the subspace projected on is the way suggested above. Write a code, with temperature T = 1, evaluating the needed coefficients by MC.